您当前位置: 首页  >  学术讲座

讲准字007号:Randomized urn models with irreducible and reducible replacement policy

发布时间:2019-01-12|浏览次数:

讲座报告中文主题:Randomized urn models with irreducible and reducible  replacement policy
专家姓名:张立新
日期:2019-01-17 时间:16:00
地点:理学院206
主办单位:理学院  

主讲简介:浙江大学求是特聘教授、浙江大学数据科学研究中心副主任。1995年获复旦大学理学博士学位,1997年晋升为教授,2001-2012年担任浙江大学统计学研究所副所长、常务副所长、所长,2009-2017年任浙江大学数学系副主任、数学科学学院副院长。现任IMS-China委员会委员、中国现场统计研究会常务理事、中国概率统计学会常务理事、浙江省现场统计研究会理事长。主要从事概率极限理论、临床试验自适应随机化设计、相依数据模型、随机过程轨道性质等领域的研究,先后主持国家自然科学基金面上项目5项、重点项目1项,发表学术论文160多篇,不少发表在《Annals of Statistics》《Annals of Probability》《Annals of Applied Probability》《Journal of the American Statistical Association》等概率论与数理统计权威刊物上,于1998年入选“浙江省跨世纪151人才工程”,2008年入选教育部“新世纪优秀人才支持计划”、2010年获得浙江省自然科学基金杰出青年基金,2012年获得国家自然科学基金杰出青年基金。 

主讲内容:Generalized Friedman urn is one of the simple and useful models considered in probability theory. Since Athreya and Ney (1972) showed the almost sure convergence of urn proportions in a randomized urn model with irreducible replacement matrix under the $L\log L$ moment assumption, this assumption has been regarded as the weakest moment assumption, but the necessary has never been shown. In this talk, we will present the strong convergence of generalized randomized Friedman urns. It is proved that, when the random replacement matrix is irreducible in probability, the sufficient and necessary moment assumption for the almost sure convergence of the urn proportions is that the expectation of the replacement matrix is finite, which is less stringent than the $L\log L$ moment assumption, and when the replacement is reducible, the $L\log L$ moment assumption is a weakest sufficient condition. The rate of convergence and the central limit theorem are also discussed.


欢迎广大师生参加!